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Received 23 February 1976 

Abstred Series expansions are investigated for a spin-glass Ising model with nearest- 
neighbour interactions J which can be randomly positive or negative. For the high- 
temperature phase the following conclusions result:-(i) the free energy has a singularity at 
about w = p-’/’ (w = tanh @I) (where p is the self-avoiding walk limit), (ii) the magnetic 
susceptibdity corresponds to uncoupled spins, (iii) the second derivative of susceptibility is 
simply related to the susceptibility of the standard Ising model and has a singularity at 
w = w:’* (where w, refers to the standard model). Higher derivatives can be dealt with 
similarly. The low-temperature phase is more difficult to deal with because of the 
degeneracy of the lowest energy state. Further investigation is needed to decide whether 
the experimentally observed singularities correspond to the above, or arise as discon- 
tinuities from the heeting of the two phases. 

The behaviour of spin-glasses with randomly competing ferromagnetic and antifer- 
romagnetic interactions, but no long-range magnetic order, has given rise to a number 
of theoretical investigations recently. Adkins and Rivier (1 974) suggested that the 
experimentally observed cusp in magnetic susceptibility should be associated with the 
disappearance of short-range order. Edwards and Anderson (1975) constructed an 
alternative theory based on the concept of particular ‘glassy’ ground states, any of which 
would ‘disorder’ with increasing temperature, ultimately giving rise to a singularity 
which is a cusp in magnetic susceptibility. Both of the above treatments made use of an 
approximation of mean-field type. 

Sherrington and Kirkpatrick (1975) put forward a model of a spin-glass with long- 
range interactions for which they were able to derive an exact solution. Considering a 
Gaussian distribution of interactions with mean Jo and standard deviation AJ7 they 
obtained results analogous to those of Edwards and Anderson for a certain range of the 
parameter Jo/AJ which they termed the spin-glass phase. For higher values of the 
parameter a ferromagnetic phase with long-range order resulted. A general review of 
theoretical work on spin-glasses has been given by Sherrington (1 976). 

It is of interest to investigate a short-range force model using a more reliable 
approach than the mean-field approximation, and we shall consider the development of 
series expansions particularly at high temperatures. This approach was used by 
Rapaport (1972a,b) for a random-bond model, but his treatment was confined to a 
ferromagnetic model with positive interactions. We shall consider a simple lattice 
model with N Ising spins having random nearest-neighbour interactions with equal 
probability of being * J. 
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L18 Letter to the Editor 

Let us first summarize the treatment of the more general king problem in which an 
i-j bond of the lattice has interaction Jh The Hamiltonian is 

where i, j refer to the nearest-neighbour bonds of the lattice, and the a; can take values 
f 1. The partition function in zero field can be calculated in the standard manner (e.g. 
Domb 1974) 

ZN@, O)=(exp(-B%'))=C n (cosh Kij+o;q sinh Kij) (Kjj=pJj, p = l/kv (2) 

the product being taken over all nearest-neighbour pairs ( i j )  of the lattice, and the sum 
over the 2N values of the a. Thus 

(ti) 

In ZN(@, 0) = In cosh Kij + In n ( 1 +  apjwij)  (wij = tanh K J .  (3) 
(ii> U,=*] ( r j )  

The terms in (3) can be split into a 'one-dimensional' type of contribution 

and a configurational series corresponding to each star embedding on the lattice. The 
stars can be classified according to topobgy (i.e. a star graph with all two degree vertices 
suppressed) and the first few topologies are shown in figure 1. 

Rgure 1. Some representative topologies. (a )  polygon (c = 1); (b)  e-topology (c = 2); (c) 
a-topology (c = 3). 

A star graph with a particular set of two degree vertices having this toplogy is termed 
a realization of the topology (Martin 1974). For each topology we define bondings 
(Domb 1972a) in which each edge of the topology has a certain multiplicity (figure 2). 
With each bonding we associate a weight w, and once this is known the contribution of 

Figure 2. Typical bondings of a @-topology with their weights: (a)  w =O; (b)  w = -1; (c) 
w = O ; ( d ) w = O ; ( e ) w = 2 ; ( f )  w = l .  
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any particular realization of the topology can be written down immediately for this 
bonding. Thus for example for the star in figure 3 the contribution corresponding to the 
bonding in figure 2 0  is 

(5) 3 3 3 2 2  
w 2 1  w 15 w 5 4  w 2 6  w 6 4 w 2 3  w 3 4 .  

Figure 3. A realization of the &topology with 7 edges. 

There are simple rules which enable one to identlfy bondings with w = 0 and hence 
eliminate them (Domb 1976); the most important is that all bondings with any odd 
vertices have w = 0 (e.g. figures 2(a), (c), (4). 

We now proceed to a stochastic model by averaging In 2, over the probability 
distribution of bond strengths, and since we have chosen a distribution with equal 
probabilities of the interaction being positive and negative, all terms involving odd 
powers of w cancel to zero. Hence, we can confine attention to bondings in which each 
edge of the topology has even multiplicity. 

It is a straig5tforward matter to derive terms of the configurational series expansion 
for various two and three dimensional lattices; for example, for the FCC lattice the first 
few terms are 

(6) 6 33 8 - 4 ~  -TW - 1 2 ~ ' ~ + 2 9 1 ~ ' ~ .  

We defer the analysis and discussion of such expansions to a subsequent publication, 
and confine attention at present to a general assessment of asymptotic contributions. 

The contribution of an r-gon with weak lattice constant pr is 

(7) 
1 2 r + i  3 r - i  4r pr(-zw 3 w  4 w  ...). 

pr is asymptotically of the form (Martin er al 1967) 

pr -prr-h 

where p is the self-avoiding walk limit, h -2; in two dimensions and h -22 in three 
dimensions; hence the contribution to the coefficient of w Z n  of terms other than the first 
in (7) can be neglected for large n. The contribution of the first term is negative, and of 
the form -2p n . 

The first bonding of a &topology which contributes is that of figure 2(e) (all the 
others in figure 2 give zero contributions). Hence a realization of the 6-topologywith r, 
s, t links in its edges contributes 

1 n -h  

from this bonding, where (r, s, t ) e  is the weak lattice constant of the realization. The 
contribution of all such realizations to the term in w Z n  is then 

2 C (r, ~9 t )e ,  ( r + s  + t = n) (10) 
and this has the asymptotic value Apnn-h+l (Domb 1972a and later numerical 
estimates). Therefore this term is more significant asymptotically than the polygon 
term as is already evident in the series (6). 
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However, higher-order graphs contribute altemately negatively and positively, 
and it is diacult to predict an asymptotic pattem of behaviour without a more detailed 
investigation. By analogy with the standard Ising model a self-avoiding walk type of 
approximation (Domb 1970) would indicate a singularity at 

We now consider the derivatives of In Z,(@, H) with respect to magnetic field H, 
and these can conveniently be expressed in terms of spin-correlation functions. Using 
the transformation 

exp(pmHai) =cosh BmH + ai sinh PmH = cosh pmH( 1 + air) (7 = tanh @mH) 

(12) 

it can tx shown that for any particular model (Domb 1970, equation (3 1)) 

where 

(?(ai, ai, . . = C f(ci, q, . . .) exp - (pfl/Z,(~, 0). (15) 
ii 

The first term on the right-hand side of (13) represents the contribution of 
uncoupled spins. The correlation between spins at any two points which enters into the 
second term can be evaluated by introducing a fictitious extra bond J’ between the two 
points, calculating the partition function, and allowing J’ to tend to zero (Domb 1972a). 
We then h d  that the graphs which determine the series expansion for the.pair 
correlation are derived from stars by eliminating an edge between two points (figure 4); 
and the only bonding of the corresponding topologies which need be considered are 
those in which the broken line (representing the eliminated edge J’) is single. 

Fcgare 4. Graphs which contribute to the spin-pair correlation function and magnetic 
susceptibility. 

This means that the multiplicity of at least one of the other edges must be odd in 
order to make the vertices even. Hence, when we pass to a stochastic model all graphs 
average to zero. Therefore, as far as the high-temeperature phase of the stochastic 
model is concemed, all spin-pair correlations are zero and the magnetic susceptibility 
corresponds to uncoupled spins. 

Proceeding to the fourth derivative with respect to magnetic field, the first term on 
the right-hand side of (14) represents the contribution of uncoupled spins; the second 
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term representing 4-point correlations can be evaluated by introducing two fictitious 
bonds J', J" between two points, calculating the partition function and allowing J', J" to 
tend to zero. The graphs which determine series expansions for 4-point correlations are 
stars in which two edges between pairs of points have been eliminated (figure 5). Some 
of these graphs are disjoint and are cancelled by graphs in the third term of the 
right-hand side of (14), since the expansion of lnZN must involve only connected 
graphs. The only remaining graphs from this third term are overlaps of pairs of 
correlation graphs which contribute to (viaj>. 

F i e  5. Graphs which contribute to the 4-point correlation function. (a) Disjoint; (bj md 
(c) connected. 

When we pass to a stochastic model all of the 4-point graphs average to zero because 
of bonds of odd multiplicity, as before. The only overlapping pair correlation graphs 
giving a contribution are those which overlap exactly (figure 6). The contribution of 
these graphs is known exactly in terms of the standard Ising model. Thus is U,, is the nth 
coefficient of the susceptibility series for the standard Ising model, the contribution to 
the fourth derivative of In ZN with respect to H is 

-;E unw2n = -;x;(wz), (16) 

(17) 

where ~ ' ( w )  is the susceptibility of the Ising model. This has a singularity at 
1/2 w = w ,  

where w, corresponds to the Curie point of the standard Ising model. 

Figure 6. Exact overlap of two spin-pair correlation graphs. 

We can proceed similarly for higher derivatives and find that if r is odd, the 2rth 
derivative of lnZN is identical with that for uncoupled spins; whilst if r is even 
configurations in the 2rth derivative of In 2, can be related to configurations in the rth 
and lower derivatives of In 2k for the standard king model, with the first singularity 
given by (17). It is possible that the true singularity of In ZN in zero field is also given by 
(17) for which (1 1) is an approximation. 

However, it is not clear whether the observed spin-glass singularities correspond to 
(17), or whether they are discontinuities arising when the low- and high-temperature 
phases meet (as must certainly be the case for the susceptibility and 2rth derivatives for 
odd r). This could be determined in principle by deriving series expansions for the 
low-temperature phase. But the lowest energy state is highly degenerate with a finite 
entropy, and is difficult to define precisely. 
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We can get some feeling for the low-temperature phase by considering a Bethe 
lattice of coordination number q (Domb 1960) having no closed circuits. Here the 
lowest energy state is uniquely defmed once a single spin is specified, the orientations of 
a pair of spins having the same sign when the bond is ferromagnetic, and opposite signs 
when the bond is antiferromagnetic. In zero field the model is then isomorphic with the 
king model for this pseudo-lattice, and the discontinuity in specific heat occurs when 

w = l/(q - 1). 

This value gives a temperature significantly higher than (17) especially for larger q. 
The susceptibility and higher derivatives with respect to H can be calculated for the 

Bethe lattice, and the behaviour at very low temperatures is similar to that of an 
antiferromagnet. However, if we are to get any idea of the true position and nature of 
the singularity in the low-temperature phase we must proceed to a higher order closed 
form approximation like that of Kikuchi (see e.g. Burley 1972) which can take the 
degeneracy of the lowest energy state into account. 

These considerations also suggest an order parameter f different from that used by 
previous authors with a simple physical interpretation. Let E&) represent the energy 
of a particular bond. Define 

At sufficiently low temperatures where the spins are organized to give maximum energy 
this should be non-zero, whereas in the high-temperature phase it is zero. Such 
energy-density energy-density correlations have been considered for the standard 
Ising model (e.g. Hecht 1967). We can look upon a spin-glass phase as one with no 
long-range spin-spin correlation, but with a long-range energy-density energy-density 
correlation. 

The treatment of the high-temperature phase can readily be extended to the D 
vector model using appropriate eigenfunction expansions to derive the partition 
functions for star topologies (Domb 1972b, 1976). However, the usual difficulty aiises 
in defining the low-temperature phase because of the infinite entropy at T =  0. 

As we have indicated, more precise information on the nature of critical behaviour 
in a spin-glass can best be obtained by numerical calculations for specific two and three 
dimensional lattices. A programme which makes use of the extensive star-lattice 
constant data available has therefore been initiated. 

This research has been supported by the European Office of the US Army. The author 
is indebted to Sir Sam Edwards, Dr D Sherrington, Dr S Kirkpatrick, Professor D 
Thouless and Mrs S McKenzie for helpful discussion and correspondence. 
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